Stratospheric ozone over the United States in summer linked to observations of convection and temperature via chlorine and bromine catalysis.

نویسندگان

  • James G Anderson
  • Debra K Weisenstein
  • Kenneth P Bowman
  • Cameron R Homeyer
  • Jessica B Smith
  • David M Wilmouth
  • David S Sayres
  • J Eric Klobas
  • Stephen S Leroy
  • John A Dykema
  • Steven C Wofsy
چکیده

We present observations defining (i) the frequency and depth of convective penetration of water into the stratosphere over the United States in summer using the Next-Generation Radar system; (ii) the altitude-dependent distribution of inorganic chlorine established in the same coordinate system as the radar observations; (iii) the high resolution temperature structure in the stratosphere over the United States in summer that resolves spatial and structural variability, including the impact of gravity waves; and (iv) the resulting amplification in the catalytic loss rates of ozone for the dominant halogen, hydrogen, and nitrogen catalytic cycles. The weather radar observations of ∼2,000 storms, on average, each summer that reach the altitude of rapidly increasing available inorganic chlorine, coupled with observed temperatures, portend a risk of initiating rapid heterogeneous catalytic conversion of inorganic chlorine to free radical form on ubiquitous sulfate-water aerosols; this, in turn, engages the element of risk associated with ozone loss in the stratosphere over the central United States in summer based upon the same reaction network that reduces stratospheric ozone over the Arctic. The summertime development of the upper-level anticyclonic flow over the United States, driven by the North American Monsoon, provides a means of retaining convectively injected water, thereby extending the time for catalytic ozone loss over the Great Plains. Trusted decadal forecasts of UV dosage over the United States in summer require understanding the response of this dynamical and photochemical system to increased forcing of the climate by increasing levels of CO2 and CH4.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UV dosage levels in summer: increased risk of ozone loss from convectively injected water vapor.

The observed presence of water vapor convectively injected deep into the stratosphere over the United States can fundamentally change the catalytic chlorine/bromine free-radical chemistry of the lower stratosphere by shifting total available inorganic chlorine into the catalytically active free-radical form, ClO. This chemical shift markedly affects total ozone loss rates and makes the catalyti...

متن کامل

Correction for Navarro et al., Airborne measurements of organic bromine compounds in the Pacific tropical tropopause layer.

Very short-lived brominated substances (VSLBr) are an important source of stratospheric bromine, an effective ozone destruction catalyst. However, the accurate estimation of the organic and inorganic partitioning of bromine and the input to the stratosphere remains uncertain. Here, we report near-tropopause measurements of organic brominated substances found over the tropical Pacific during the...

متن کامل

When will the Antarctic ozone hole recover?

[1] The Antarctic ozone hole demonstrates large-scale, man-made affects on our atmosphere. Surface observations now show that human produced ozone-depleting substances (ODSs) are declining. The ozone hole should soon start to diminish because of this decline. We demonstrate a parametric model of ozone hole area that is based upon a new algorithm for estimating chlorine and bromine levels over A...

متن کامل

The chemistry of atmospheric bromine

Bromine may act as a catalyst for recombination of ozone and could be more efficient than either nitric oxide or chlorine. The lower atmosphere contains small concentrations of gaseous bromine produced in part by marine activity, in part by volatilization of particulate material released during the combustion of leaded gasoline, with an additional contribution due to the use of methyl bromide a...

متن کامل

Continuous Lidar Monitoring of Polar Stratospheric Clouds at the South Pole

P olar stratospheric clouds (PSC) play a primary role in the formation oí annual "ozone holes" over Antarctica during the austral sunrise. Meridional temperature gradients in the lower stratosphere and upper troposphere, caused by strong radiative cooling, induce a broad dynamic vortex centered near the South Pole that decouples and insulates the winter polar airmass. PSC nucleate and grow as v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 25  شماره 

صفحات  -

تاریخ انتشار 2017